Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines.
نویسندگان
چکیده
The ability of Thlaspi caerulescens, a zinc (Zn)/cadmium (Cd) hyperaccumulator, to accumulate extremely high foliar concentrations of toxic heavy metals requires coordination of uptake, transport, and sequestration to avoid damage to the photosynthetic machinery. The study of these metal hyperaccumulation processes at the cellular level in T. caerulescens has been hampered by the lack of a cellular system that mimics the whole plant, is easily transformable, and competent for longer term studies. Therefore, to better understand the contribution of the cellular physiology and molecular biology to Zn/Cd hyperaccumulation in the intact plant, T. caerulescens suspension cell lines were developed. Differences in cellular metal tolerance and accumulation between the cell lines of T. caerulescens and the related nonhyperaccumulator, Arabidopsis (Arabidopsis thaliana), were examined. A number of Zn/Cd transport-related differences between T. caerulescens and Arabidopsis cell lines were identified that also are seen in the whole plant. T. caerulescens suspension cell lines exhibited: (1) higher growth requirements for Zn; (2) much greater Zn and Cd tolerance; (3) enhanced expression of specific metal transport-related genes; and (4) significant differences in metal fluxes compared with Arabidopsis. One interesting feature exhibited by the T. caerulescens cell lines was that they accumulated less Zn and Cd than the Arabidopsis cell lines, most likely due to a greater metal efflux. This finding suggests that the T. caerulescens suspension cells represent cells of the Zn/Cd transport pathway between the root epidermis and leaf. We also show it is possible to stably transform T. caerulescens suspension cells, which will allow us to alter the expression of candidate hyperaccumulation genes and thus dissect the molecular and physiological processes underlying metal hyperaccumulation in T. caerulescens.
منابع مشابه
Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.
Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thla...
متن کاملZinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae)
• Growth and heavy metal (Zn and Cd) hyperaccumulation were investigated in metallicolous and nonmetallicolous Mediterranean populations of Thlaspi caerulescens (Brassicaceae), and in offspring from controlled crosses between these populations. • Seeds for the growth and crossing experiments were collected from a number of sites varying in heavy metal contamination. Tissue Zn and Cd content was...
متن کاملNatural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe
Thlaspi caerulescens J. & C. Presl is a distinctive metallophyte of central and western Europe that almost invariably hyperaccumulates Zn to > 1.0% of shoot dry biomass in its natural habitats, and can hyperaccumulate Ni to > 0.1% when growing on serpentine soils. Populations from the Ganges region of southern France also have a remarkable ability to accumulate Cd in their shoots to concentrati...
متن کاملTcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter
BACKGROUND Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. METHODOLOGY/PRINCIPAL FIND...
متن کاملProteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation
Metal hyperaccumulator plants have previously been characterized by transcriptomics, but reports on other profiling techniques are scarce. Protein profiles of Thlaspi caerulescens accessions La Calamine (LC) and Lellingen (LE) and lines derived from an LCxLE cross were examined here to determine the co-segregation of protein expression with the level of zinc (Zn) hyperaccumulation. Although hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 147 4 شماره
صفحات -
تاریخ انتشار 2008